MICROBIAL SOURCE TRACKING in New Hampshire Coastal Waters Using *Escherichia coli* Ribotyping

Steve Jones

Center for Marine Biology/Jackson Estuarine Lab University of New Hampshire

> State of the Estuaries Conference Portsmouth, NH 20 October, 2003

INTRODUCTION

Water Quality Issues in the NH Seacoast

- Recreational shellfish harvesting is limited in some NH Seacoast shellfish waters;
- Studies have shown widespread pollution problems associated with storm events & sewage system infrastructure;
- Remedial actions following shoreline surveys in some problem areas have not been successful in improving water quality.

Temporal trends for fecal coliforms in Great Bay (Langan & Jones)

Traditional Indicators for Identifying Fecal Sources

- Total & fecal coliforms, Escherichia coli, enterococci
 not fecal specific,
 - •poor correlation with GI illness,
 - •don't survive as long as viruses in marine waters,

DO NOT differentiate animal from human sources when routine analyses performed

NEW TOOL: Microbial Source Tracking

IDENTIFY species that are fecal contamination SOURCES, not just concentrations of bacteria

Ribotyping

- DNA profiling of bacterial strains; Target DNA (rRNA) conserved, yet variable enough to determine
- variable enough to determine differences between isolates from different animals.
- Gaining acceptance for MST.
- Potential significant savings of resources in efforts to improve coastal water quality.

MATERIALS AND METHODS

Ribotyping: Lab Procedures

- E. coli isolated and identification verified: source species & water samples.
- DNA extracted & purified.
- DNA digested w/restriction enzyme.
- DNA separated via gel electrophoresis.
- DNA denatured & blotted onto membrane.
- Hybridization with *E. coli* rRNA DNA probe.
- DNA exposed to a chemiluminescent substrate & digitally imaged.
- Image enhanced & optimized in computer.

Ribotyping: RiboPrinter Procedures

- *E. coli* isolated and identification verified: source species & water samples.
- Load culture into RiboPrinter.
- DNA banding profile images enhanced & optimized in computer.

RiboPrinter® System -Universal Tool for the Micro Lab

- § Identification AND Characterization
- § Ease of Use
 - Fully automated, minimal hands-on
- § Speed
 - Results in 8 hours
- § Accuracy
- § Standardization

Source Identification: Data Analysis

- ∀ DNA patterns are analyzed by computing similarity using Dice's coincidence index.
- Source species identification for water sample patterns is based on degree of matching to source species patterns.

STUDY SITE DESCRIPTION

Hampton/Seabrook Harbor

- Important soft shell clam recreational harvesting area.
- Mostly sewered, continued problems with bacterial contamination.
- Need to identify contamination sources during small rainfall events and during all conditions in autumn.

ROUTINE MONITORING What are sources of contamination in harbor?

- Fecal coliforms used to classify shellfish-growing waters;
- Ten (10) sites for routine water sampling;
- Samples collected from 8/7/00 to 10/29/01.

CONCLUSIONS: Routine Monitoring

- Humans are the most significant source species of fecal pollution in Hampton Harbor.
- Wild animals as a group are an important type of source
- Source species distributions were affected only slightly by rainfall and season.

STORMWATER PIPES
What is the significance of stormwater pipes as sources of fecal pollution?

- Two sites, one each in Seabrook and Hampton;
- Samples collected during a rainfall event (1.39"/12 h) on 10/16/02;
- Water samples collected during 5 stages of runoff hydrograph.

Source Sr	ecies	Dat	abase: Rib	oPri	nte
•					
Source species	Source	# of	Source species	Source	# of
category	species	Isolates	category	species	Isolate
"HUMANS"	205		DOMESTIC ANIMALS	101	
	septage	16		alpaca	3
	wastewater	107		buffalo	5
	humans	82		chicken	3
PEIS	58			cow	56
	cat	21		goat	4
	dog	37		horse	28
				sheep	2
AVIAN SPECIES	117		WILD ANIMALS	293	
	cormorant	12		coyote	29
	duck	16		deer	93
	geese	39		mouse	12
	gull	28		muskrat	2
	pigeon	5		otter	14
	robin	4		raccoon	84
	sparrow	3		rabbit	27
	starling	3		red fox	27
	wild turkey	7		skunk	5

Source species (90% similarity) in storm water from pipe in Seabrook, NH: 10/16/02 E. coli = 14,400 - 1,120,000 cfu/100 ml Unidentified 20% Human 26% Wild animals Birds 29%

CONCLUSIONS: Hampton/Seabrook Harbor

- Use of the RiboPrinter provided more accurate identification:
- Birds were an important source type in both pieps, humans were more important in the Seabrook pipe;
- The profiles of source species identified at the stormwater pipes were different from each other and from what was found in the Harbor.

Types of source species identified for E. coli isolates from NH oysters and overlying water

	WAT	ER AND TIS	SUE	
Source sp.	APPROVED	AREA	PROHIBITED AREA	
type	Isolates	%	Isolates	%
Human	5	17%	9	24%
Pet	0	0%	2	5%
Bird	2	7%	3	8%
Wild animal	1	3%	1	3%
Livestock	17	57%	16	43%
Unknown	5	17%	6	16%
Source sp.	OVERLYIN	HBITED AR. IG WATER	EA OVSTER T	ISSUE
type	Isolates	%	Isolates	96
Human	5	26%	4	22%
Pet	1	5%	1	6%
Bird	1	5%	2	11%
Wild animal	1	5%	0	0%
Livestock	8	42%	8	44%
Unknown	3	16%	3	17%

Research Needs

- A larger source species database;
- Wild animal sources: Ground truth; Public health threat; Loading verification
- Sampling design;
- Reduce costs: modify study design.
- Temporal and geographical effects on the consistency of intraspecies bacterial strains;
- Methods comparison studies.

ACKNOWLEDGMENTS

- NH Estuaries Project, NH Department of Environmental Services, US EPA, NH Coastal Program, NOAA/CICEET, UNH
- Natalie Landry (NHDES), Chris Nash & Andy Chapman (NHDES-Shellfish Program)
- Tamara Bryant, Bethany O'Hara & Emily Levin (UNH-JEL)
- Peter Hartel and staff (Univ of GA)